радикал кольца

радикал кольца
радика́л кільця́

Русско-украинский политехнический словарь. 2013.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "радикал кольца" в других словарях:

  • КОЛЬЦА И АЛГЕБРЫ — множества с двумя бинарными операциями, к рые обычно принято наз. сложением и умножением. Кольцом наз. множество: 1) являющееся абелевой группой относительно сложения (в частности, в кольце существует нулевой элемент, обозначаемый 0, и… …   Математическая энциклопедия

  • РАДИКАЛ ИДЕАЛА — Аассоциативно коммутативного кольца R множество всех элементов , нек рая степень к рых содержится в А. Это множество обозначается . Оно является идеалом в R, причем Обобщением этого понятия является понятие радикала подмодуля. Пусть М модуль над… …   Математическая энциклопедия

  • Радикал Джекобсона — Радикалом Джекобсона кольца называется пересечение всех его максимальных идеалов. Он также допускает следующее описание: всякий элемент принадлежит радикалу Джекобсона тогда и только тогда, когда элемент обратим в для всех . В кольце радикал… …   Википедия

  • КВАЗИРЕГУЛЯРНЫЙ РАДИКАЛ — кольца наибольший квазирегулярный идеал данного кольца. Идеал Акольца Rназ. квазирегулярным, если Аявляется квазирегулярным кольцом. Во всяком альтернативном (в частности, ассоциативном) кольце существует К. р.; он совпадает с суммой всех правых… …   Математическая энциклопедия

  • ДЖЕКОБСОНА РАДИКАЛ — кольца A идеал J(А)ассоциативного кольца А, удовлетворяющий следующим двум условиям: 1) J(A) наибольший квазирегулярный идеал в А(кольцо Rназ. квазирегулярным, если для любого его элемента аразрешимо уравнение а+x + ах=0);2) в факторкольце нет… …   Математическая энциклопедия

  • АССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — кольца и алгебры с ассоциативным умножением, т. е. множества с двумя бинарными операциями сложением + и умножением Х, являющиеся абелевой группой по сложению и полугруппой по умножению, причем умножение дистрибутивно (слева и справа) относительно …   Математическая энциклопедия

  • НЕАССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — множества с доумя бинарными операциями + и ., удовлетворяющими всем аксиомам ассоциативных колец и алгебр, кроме, быть может, аксиомы ассоциативности умножения. Первые примеры неассоциативных колец (Н. к.) и неассоциативных алгебр (Н. а.), не… …   Математическая энциклопедия

  • АЛЬТЕРНАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — Альтернативным кольцом (А. к.) наз. кольцо, в к ром каждые два элемента порождают ассоциативное подкольцо; альтернативной алгеброй (А. а.) наз. линейная алгебра, являющаяся А. к. Согласно теореме Артина класс всех А. к. задается системой тождеств …   Математическая энциклопедия

  • КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… …   Математическая энциклопедия

  • СТРУКТУРНОЕ ПРОСТРАНСТВО — кольца множество всех его примитивных идеалов с топологией, замкнутые множества в к рой суть такие подмножества что Ссодержит всякий идеал, содержащий пересечение всех идеалов из С(ср. Зариского топология). С. п. кольца Rгомеоморфно С. п.… …   Математическая энциклопедия

  • РАДИКАЛЫ — колец и алгебр понятие, впервые возникшее в классической структурной теории конечномерных алгебр в нач. 20 в. Под Р. первоначально понимался наибольший нильпотентный идеал конечномерной ассоциативной алгебры. Алгебры с нулевым Р. (называемые… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»